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I. INTRODUCTION 

Almost every large gravitational lens consists of many small clumps of matter that 

are distributed within the large lens in a more or less random fashion. Each such clump 

acts as a gravltationd lens on its own right. If it happens that such a clump is on the 

way of the rays forming one of the macroimages, than it should amplify its brightness. 

Such an amplification may be observed as a sudden change in brightness of this image. 

On the other hand, one needs to know what is a likely difference of the brightness be- 

tween macroimages due to the microlensing. Such information is necessary to properly 

reconstruct the distribution of matter in the large lens. 

It is clear that any theory of microlensing must be statistical in nature, since the most 

one can hope for is to know the statistical distribution of matter in the large lens. One 

would like to find a direct relation between the statistical properties of the matter distri- 

bution and the distribution of images. So far two approaches to this problem have been 

tried. First, one can do Monte Carlo simulation of the matter distribution and compute 

the illumination of the observer plane by numerically integrating the ray equation sufficient 

number of times (Paczydrki and Wambsganss 89, Wambsganss, Paceynski and Katz 89). 

This approach is very straightforward and gives the only chance to check the details of the 

distribution of images, but it requires a rather formidable numericd work. Also, to use it 

effectively, one would like to have some statistical mess-s of the resulting distribution 

of images. The second approach is based on the idea of treating the mierolensing as a 

multiple scattering problem. (Katz, Bdbus and Paczynski 86, Deguchi and Watson 88). 

In this paper I would like to present the third method. This method leads to a very 

direct relation between the statistical measures of the matter distribution and the statistical 

properties of the images. The two required assumptions are that the matter is distributed 

in a random way and the lens is far away, so that the paraxid optics applies. The method 
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is hardly new - it W.W developed some thirty years ago by Longuet - Higgins (Longuet - 

Higgins 56,58,59,60a,b,c) for the problem of the statistical distribution of the reflesions 

of the sunlight from the surface of water. The present paper relies very heavily on his 

work, in fact it would have been unnecessary to write this paper, if people interested in 

the graviiationd lensing had been aware of the Longuet Higgins work. In the paper, X do 

not give detailed references to his work, but one should be aware that most of these results 

an? his. 
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II. FERMAT PRINCIPLE AND THE SURFACE OF TIME DELAY 

It is a rather easy exercise to derive the lens equation for a thin lens using Fermat 

principle. (Blandford and Narayan 86, Schneider 84, Blandford and Kochanek 87). The 

geometrical relations sue shown in the Fig. 1. The time required for a light ray to travel 

kom the source to the observer through the point 2’ in the lens plane can be written as a 

sum of two terms. The first is the geometrical length of the path 

ctgeo = 2DoLDLs 
o+ 4Dos(&q2, 

and the second is due to the gravitational time delay 

dgrav = -2(1 + I& J&d(J), 

(2.1) 

where d(s) is the newtonian potential dong the ray. IL is the redshift of the lens. Assuming 

that the lens is thin and projecting matter density on the plane of the lens, one can write 

+&v as 

dgrav = -4(1+ rl,$ Jd%‘E(z’)log(lz - 2’1). (2.3) 

It is convenient to introduce r = &y&&e0 + 43rsv 1 ami Lit = &$$k. &tit 

is the uniform surface density required to focus rays on the observer. Now I introduce 

2 = C/C,nt, and the surface of the time delay r is 

T(z,r’)=@-‘q2-f J d%‘~(z’)log((z’- $1). 

Now,Idefine$(Z) = ~Jd*=‘~(=‘)log(1~-~1). S ince Alog = 2~6(~)(2), the potential 

4 satisfies two dimensional Poisson equation 

A$(Z) =25(Z). (2.5) 

Finally, it is convenient to rescde the coordinates in the lens plane by the characteristic 

size of the macrolens L, and introduce 4 = +/L2. Now the equation of the surface of time 
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delay is 

i(Z,r’) = ;(s - e-f -q(s), (2.6) 

where all variables are dimensionless. Since now I drop the tilde to simplify notation. One 

can make the notation even simpler by introducing 5’ = t’ - K I do that, and drop the 

prime. 

The Fermat principle says that the images are formed at the critical points of the 

surface T( 2; rq 

V,r(Z;?) = 0, or V+(z) = 2: (2.7) 

The intensity of the images depends on the external curvature of the surface v(Z, ?) at the 

critical point. The intensity is highest when a caustic is formed, that is when the hessian 

at the critical point vanishes. In other words, the determinant of the tensor of external 

curvature vanishes. Consequently, one would like to know the statistical distribution of 

the critical points of r(S,r?) and the distribution of the curvature n at these points. 
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III. MODELS OF THE SURFACE DENSITY 

The only essential requirement that C(z) must satisfy is that it is random. It also 

must vanish for n >> 1 quickly enough so that the integral of C over the entire lens plane 

is finite. The simplest possibility is to assume that C is a superposition of plane waves 

with random phases 

E(z) = ~Ja’,o(lkl)sin(~-.-+r), (3.1) 

where c is selected from the interval (0,2n) with a uniform probability. I assume that a(b) 

depends on the length of the wave vector only. This assumption is not necessary, but it 

simplifies the algebra very much. 

The more realistic assumption is to take X(r) = C, f(r - r,), where f is a function 

that specifies the density profile of the micro lense and {tn} is a set of random positions. 

Instead of trying to write sll formulae in the most general fashion, I take f to be a gaussian 

function, so that C(r) = 5 2% #.Jp - fr -$*. n=l 262 (3.2) 

Now I can take both on and s, to he random variables, but to make things even simpler 

I assume that all on (LIC the same. I also assume that +;, have random directions, selected 

in an isotropic way, while the magnitude of ta is chosen according to a given probability 

distribution h(r). The function h(t) should be chosen in such a way, that the density 

profile of the macrolens is reproduced, and is normalized so that 2n Ji &h(r) = 1. 

Having decided what the surface density is one can immediately write the corresponding 

expression for the potential +, since it is related to H by the Poisson equation. So I have 

g(r) = 2 J d2k$ sin(i. r’+ c), 
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for the superposition of plane waves, and 

+1(r) = 2 iI / dzkc-;;‘6’ eos$ . (;- ;,,)). (3.4) 

for the superposition of gaussian fluctuations. ~. If the distribution of gaussian peaks is 

uniform in the plane of the macrolens, then h = l/x. It is more realistic to a.ssisme that 

the gaussian peaks are distributed uniformly within three dimensional, spherical matter 

distribution, so that for the projected density of gausaian peahs I have h(r) = &dm. 

In many situations one may be interested in the lensing due to a surface density E that 

can be written as a sum of a regular, smooth component C, and a random &. Since the 

Poisson equation is linear, one can write 4 = 411, +Jtr and redefine the vector r’+ +‘+ V$,, 

so that only stochastic part & plays any role in the anslysis of the statistical properties 

of the images. 
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IV. STATISTICS OF THE CRITICAL POINTS 

In this section I want to derive the formula for the number density of the criticd points 

and the their totd number. The crucid ingredient in this cdculstion is the fact, that +!J(z) 

is a sum of many stochastic terms. According to the central limit theorem, the distribution 

of ah quantities formed kom qb(z) by linear operations is normaI. I denote (1 = o-‘Be+, 

(2 = yWISy$, (3 = Bz,$, .5 = a&,$, .$s = S$$. The distribution of.& is 

IJ(Gt..&a) = 
(2s):/vz 

exP -4Wjtitjt 

where A = detQ, Qij = (C(j), and MO = 1. SO I have to calculate the required correia- 

tions (t;(j). The calculation is very simple, in particular for the fist model of the surface 

density. One gets 

(h&) = $$ i= dk y = 7, (4.2) 

Kzh) = 7, and (<l&2) = 0. The correlations between the first and second derivatives of 

$I all vanish. Next 

(h&s) = $ lm dkka’(k) = ml, (4.3) 

and (&&) = ml, (&(5) = (<&) = fml. For a(k) = o(k6)“‘/2e-ik6 the moment ml = 

3(m + l)!a2/(87&). 

The structure of the correlations matrix is the identical for the second model of the 

surface density, but the expressions for the moments m-1 and ml are d&rent 

2M2 O” 
m-1=4* o J 

-1'6' 
a+(a), (4.4 

3a2iu2 OD 
m1= 16~ 0 J dk&e-h’6’I(k), (4.5) 

where 
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(Jo(z) is the Bessel function.) 

The matrix of correlations has a block diagonal form, so the probability distribution 

factors 

P(&.*&) = P(hri2)db,t4~t5), 

P(L<2) = && =P - 
(&f + Y2& 

2m-1 ’ 

(4.7) 

(4.8) 

and 

(4.9) P(b,t4,&) = 
1 

(2n93/2%6 
a~-fWjk<j. 

where i, j = 3,4,5, A = &mf, and 

M=&(;I ; i) 

Now I am interested in the number of points with a specified values of (1 and 63 in the 

cell dzdy. It is given by the expression 

n=P(tlrt21 J 43~4~6P(f3,~4,~5)1~~~~:~)) 

=P(LC2) 1 J- 
I 

(4.10) 

IZYl (27r)3/3 a 
&d&45 I(& - 1X14 - 1) - EZl =P -fMijt& 

The next step is to evaluate this integral. There are two quadratic forms present in this 

integral. It is possible to make a linear change of variables {i = oijqj, such that both forms 

are diagonahzed 

Wjtitj =~f + II: + ~3” 

RjMj=<3t4-& 'llrlt +hd +l37523 
where the numbers 1; are the roots of the equation 

det(fl - 1M) = 0. 

They are li = ml(i, -f, -4). The roots satisfy the following relations 

111213 = ;A, 

I1 -I- 12 + 13 = 0, 

1112 •i- l2I3 + 1311 = -irnt = -iS, 
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ad Ia(f = A l/*. One can also prove that 

(E3-1)(t4-1)-tf: = C1j(7j +Yj), 
j 

where in general 

% = - 
a3j + arj 

2lj ’ 

but in the isotropic case y1 = 3 and yz = y3 = 0. Therefore 

(4.14) 

d7Ilddq3 C lj(qj + yj)2 c-:9x. (4.15) 

j 

One can check that without the modulus sign, the integral over uj gives 1; adding such an 

integral to both sides of the equation above and integrating over dzdy I get 

N+l= 
2 

(2s)3/2 JJJ dVlhdq3 Clj(qj + yj)2e-~"', j 
where the integral now is over the region in the n space, such that the expression under 

the sum is positive. One can easily see that this region can be parametrized by 

Jl;(rll + Yl) = r, -m < + < +oo, 

Jj&& =rsinBcos$, 0 < 13 < $r, 

J&=tsinBsin~, O<qS<27r 

The integration is now straightforward and the result is 

N=l+~exp-&. 
1 

Inserting the moment ml of the superposition of plane waves, one gets 

N = 1 + (;$f exp -3(m4;~l,,2. 

(4.17) 

(4.18) 

In the Fig.2 and Fig. 3 I plot N as a function of CM for several values of 6, both for 

the uniform distribution of gaussian fluctuation in the plane of the macrolense and in the 

sphere of the macrolensing object. The number of images decreases when 6 increases. This 

seems correct: when 6 is small the potential tr, changes on smaller scales and the chance 

of finding a critical point increases. 
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V. DISTRIBUTION OF THE CURVATURE 

There are two measures of the curvature of the surface r 

J(T) = V3T = /cl + 62, 

l-l(~) = Hess(r) = n1n2, 

where ni are the two principal radii of the curvature of the surface T. One can easily check, 

that D(T) = 1 - .7($) + n(+). If J($) and Q(4) are not correlated, I can compute their 

distribution separately. 

J($) is a sum of two random variables, so its distribution is normal. 

so 

Since the gradient of 41, are not correlated with the second derivatives, p(J) gives the correct 

distribution of .I at the critical points. 

The distribution of fl($) is more difficult, since there are no reasons to expect that 

this distribution is normal. The trick is to use the characteristic function (Fourier trans- 

formation) 

d(t) = ~;p(n)e’Oldn. (5.3) 

Now, I can use the variables ui defined in the previous section 

Pw(tl)) = P(G + 12q; + 134). (5.4) 

The q’s are independent stochastic variables, so the probability of their sum is a product 

of probability for each ui 

Phd + 129; + 13’1:) = Pl(‘?l)P2(‘!2)P3(~3h 
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where 

1 -11 - Pi(%) = JZ;;” ?lqi 

The corresponding distribution for the variable x1 = 11~: is 

P(X1) = 1 
0, ifx<D 

*q-$$:, ifx> 0 

and the expressions for the probability distribution of x2 and x3 are similar. Now I can 

easily compute the characteristic function of p(x1) 

h(t) = I m p(xdeiX1’dxl 
-m 

=&iyd 

and the characteristic function of the p(O) is the product of pi 

(5.7) 

4(t) = 
1 

d 
1+ 3Ht2 + 2iAt3’ 

Defining A = 2A/(3H)3/2 and w = fl/&? I can write find the probability distribution of 

curvature as 

p(w~)) =&J-;‘=’ ace xa;;;2 _ 1 
=&fh 4. (5-Q) 

The function f(w,x) cannot, in a general, be calculated analytically. However, in the 

present case the two negative roots of the the expression under the square root coincide 

and the cdculation is very easy 

(5.10) 

f(w) has a very sharp peak at w = 0 and is not symmetric around the maximum. 

If J($) and a(+) are correlated it is necessary to compute O(T) directly. Besides, 

such a calculation should be useful in any case and is not much more difficult than the 
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computation of the distribution of l-l($). Using the qi variables and restricting myself to 

the case of an isotropic matter distribution, I can write 

n(r) = h(m - l;“2)2 + 12rl; + 13732. (5.11) 

So now the variable xl = Il(nl - 1;“2)2 and the ch aracteristic function of its distribution 

is 

(5.12) 

Consequently, the probability distribution of n(v) is 

(5.13) 

This integral can be evaluated audyticaiiy for w 5 0. I write, as before, ~(R(T)) = 

&f&> HI, h w ere the function fa(w, H), for w < 0, is 

fi+,H)=cxp A-&). 
( 

In the Fig. 4 I plotted fa(w, II) for several values of H. When H -+ co, f&u,H) -+ f(w), 

as defined before. 

The next step is to find the probability distribution of curvature at the critical point of 

v. This turns out to be rather straightforward. The probability of finding a critical point 

in the ceii dzdy is 

nd4/ = P(flrfddzdy dEsdEl~sp(~3,~4,Es)~l~(~)l, I (5.14) 

where the triple integral is exactly the s-e as one that I evaluated in the section IV. 

Therefore, the distribution of <is i = 3,4,5 at the critical point is 

(5.15) 
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Now, integrating over all .$, i = 3,4,5 between fl and n + dn I c~ul get the probability 

distribution of R at the critical point 

ll+dfl 
p*(ww = n 

I 
F*(&t44,b)4s4445 

1 CJ+dn (5.16) 

=- J Nn P(~s,~4r,b)ln14s4443, 

but between the limits of integration n is approximately constant, so 

P*(n(r)p =qf&2(T))dn 

P*vw) =%dw, H) - N 

(5.17) 

Finally, since the amplification is proportional to the inverse of In(r)/ it is interesting to 

find the distribution of IYI = l/lnl (+ = l/w). An elementary derivation gives 

P*(IW* = ~(fB(~lH) + r-d-w,W = dAW& 

The function g($,H) is plotted in the Fig.5 for several values of H. 

(5.18) 
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VI. CONCLUSIONS 

The formalism presented here allows one to derive explicit formulas for the average 

number of images and the distribution of curvature at the critical points. It provides 

e. direct relation between the statistical distribution of matter and that of images. It 

is interesting that both the number of the images and the distribution of curvature are 

governed by the same statistical measure of of matter distribution, namely by the ml 

moment. It would be interesting to find the observable features of the images that depend 

on the other moments. 

The results obtained here can be - and will be extended to the more complicated 

situation. First of all, one can consider time dependence of the microlensig by allowing for 

the time dependence of the matter distribution. The only new difficulty that should be 

expected in such case is due to the fact that the random field becomes three dimensional 

and the corresponding integrals become more difficult. 
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FIGURE CAPTIONS 

Fig. 1 The geometry of the lens. 

Fig. 2 The number of images as a function of the surface density o, for 6 = 0.05, 0.10, 

0.15,0.20, 0.25, 0.30. The smallest value of 6 corresponds to the largest number of images. 

Uniform distribution of gaussian fluctuations on the lens plane is assumed. 

Fig. 3 The number of images aa a function of the surface density b, for 6 = 0.05, 0.10, 

0.15,0.20, 0.25, 0.30. The smallest v&e of 6 corresponds to the largest number of images. 

Uniform distribution of gaussian fluctuations in a sphere containing the lens is assumed. 

Fig.4 Function fa(~,H) for H = 0.01, l., lo., 100. The hightest value of If corre- 

sponds to the curve with the highest peak at w = 0. 

Fig.5 Function g(w, H) for H = 0.1, l., lo., 100. The curve with the highest peak 

corresponds to the smallest v&e of H. 
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